Role of mitochondrial superoxide dismutase in the development of diabetic retinopathy.

نویسندگان

  • Renu A Kowluru
  • Lamia Atasi
  • Yeh-Shih Ho
چکیده

PURPOSE Apoptosis of retinal capillary cells is an early event in the pathogenesis of retinopathy in diabetes, and oxidative stress has been linked to accelerated apoptosis of retinal capillary cells. Mitochondria are the major endogenous source of superoxide, and superoxide is considered to be a causal link between elevated glucose and the major biochemical pathways postulated to be involved in the development of vascular complications in diabetes. The purpose of the present study is to determine the role of mitochondrial superoxide dismutase (MnSOD) in the development of diabetic retinopathy. METHODS The effect of overexpression of MnSOD on glucose-induced endothelial cell oxidative stress, nitrosative stress, and apoptosis was determined by using bovine retinal endothelial cells. Furthermore, the effect of diabetes in rats (11 months' duration) on the activity and the mRNA expression of retinal MnSOD were also determined. RESULTS MnSOD activity in the nontransfected control retinal endothelial cells was 20% compared with the total SOD activity and was increased to 60% in the MnSOD-transfected cells. MnSOD overexpression prevented a glucose-induced increase in oxidative stress (8-hydroxy guanosine levels), nitrosative stress (nitrotyrosine formation), and apoptosis of retinal endothelial cells. MnSOD enzyme activity and its mRNA were decreased significantly in the retina obtained from the diabetic rats, and these abnormalities were prevented by long-term lipoic acid therapy. CONCLUSIONS The results of this study suggest a protective role for MnSOD in retinal capillary cell death and, ultimately, in the pathogenesis of retinopathy in diabetes. Understanding the role of MnSOD to modify the course of retinopathy could elucidate important molecular targets for future pharmacological interventions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Role of Glyceraldehyde 3-Phosphate Dehydrogenase in the Development and Progression of Diabetic Retinopathy

OBJECTIVE Mitochondrial superoxide levels are elevated in the retina in diabetes, and manganese superoxide dismutase overexpression prevents the development of retinopathy. Superoxide inhibits glyceraldehyde-3-phosphate dehydrogenase (GAPDH), which activates major pathways implicated in diabetic complications, including advanced glycation end products (AGEs), protein kinase C, and hexosamine pa...

متن کامل

Manganese Superoxide Dismutase Gene Polymorphism (V16A) is Associated with Diabetic Retinopathy in Slovene (Caucasians) Type 2 Diabetes Patients

Substantial data indicate that oxidative stress is involved in the development of diabetic retinopathy. Two candidate genes that affect the oxidative stress are manganese mitochondrial superoxide dismutase (Mn-SOD) and endothelial nitric oxide synthase (eNOS). The aim of the present study was to examine the role of the V16A polymorphism of the Mn-SOD gene and the 4a/b polymorphism of the eNOS g...

متن کامل

Oxidative stress and diabetic complications.

Oxidative stress plays a pivotal role in the development of diabetes complications, both microvascular and cardiovascular. The metabolic abnormalities of diabetes cause mitochondrial superoxide overproduction in endothelial cells of both large and small vessels, as well as in the myocardium. This increased superoxide production causes the activation of 5 major pathways involved in the pathogene...

متن کامل

Epigenetic Changes in Mitochondrial Superoxide Dismutase in the Retina and the Development of Diabetic Retinopathy

OBJECTIVE To investigate the role of epigenetic regulation of the manganese superoxide dismutase gene (sod2) in the development of diabetic retinopathy and the metabolic memory phenomenon associated with its continued progression after hyperglycemia is terminated. RESEARCH DESIGN AND METHODS Streptozotocin-induced diabetic rats were maintained in poor glycemic control (PC, GHb ∼12%) or in goo...

متن کامل

Epigenetic Modifications and Diabetic Retinopathy

Diabetic retinopathy remains one of the most debilitating chronic complications, but despite extensive research in the field, the exact mechanism(s) responsible for how retina is damaged in diabetes remains ambiguous. Many metabolic pathways have been implicated in its development, and genes associated with these pathways are altered. Diabetic environment also facilitates epigenetics modificati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Investigative ophthalmology & visual science

دوره 47 4  شماره 

صفحات  -

تاریخ انتشار 2006